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Abstract. We propose an expressive language to specify formally behavioral
properties of programs involving floating-point computations. We present a de-
ductive verification technique, which allows to prove formally that a given pro-
gram meets its specifications, using either SMT-class automatic theorem provers
or general interactive proof assistants. Experiments using the Frama-C platform
for static analysis of C code are presented.

1 Introduction

Floating-point computations appear in many critical problems such as numerical analy-
sis, physics, aeronautics (software embedded in satellites, robots), energy (nuclear cen-
ters), automotive, etc. As we rely more and more on software, the consequences of a
bug are more and more dramatic, causing great financial and even human losses.

There are numerous approaches to checking that a program runs as expected. On
the one hand, dynamic analyses run the program on selected inputs and checks if the
outputs are the one expected; their completeness relies on some coverage criteria. On
the other hand, static analyses check the program code without running it. Some static
analyses are performing abstractions on the code; this is the case for model checking
and of abstract interpretation techniques. Deductive verification techniques, originat-
ing from the landmark approach of Floyd-Hoare logic, perform static analysis of code
without abstraction. A common approach is to generate automatically logic formulas
called verification conditions (VCs for short), with techniques for instance based on
Dijkstra’s weakest precondition calculus [15]. The generated formulas must be checked
valid hopefully by automatic theorem provers. Complex behavioral properties of pro-
grams can be verified by deductive verification techniques, since these techniques usu-
ally come with expressive specification languages to specify the requirements. Nowa-
days, several implementations of deductive verification approaches exist for standard
programming languages, e.g., ESC-Java2 [11] and KeY [6] for Java, Spec# [3] for C#,
VCC [28] and Frama-C [18] for C. In each of them, contracts (made of preconditions,
postconditions, and several other kinds of annotations) are inserted into the program
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source text with specific syntax, usually in a special form of comments that are ignored
by compilers. The resulting annotations languages are called Behavioral Interface Spec-
ification Languages, e.g., JML [9] for Java, ACSL [5] for C.

To analyse FP (floating-point) computations, abstract interpretation-based tech-
niques have shown quite successful on critical software, as examplified by tools Fluc-
tuat [20] and Astree [7]. However, there are very few attempts to provide ways to spec-
ify and to prove behavioral properties of floating-programs in deductive verification
systems like those mentioned above. A first proposal has been made in 2007 by Boldo
and Filliâtre [8] for C code, using the Coq proof assistant [29] for discharging VCs. The
approach presented in this paper is a follow-up of the Boldo-Filliâtre approach, which
we extend in two main directions: first a full support of IEEE-754 standard for FP com-
putations, including special floating-point values (for infinity, NaN (Not-a-Number));
and second the use of automatic theorem provers. Our contributions are the following:

– Additional constructs to specification languages for specifying behavioral proper-
ties of FP computations. This is explained in Section 3.

– Modeling of FP computations by a first-order axiomatization, suitable for a large
set of different theorem provers, and interpretation of annotated programs in this
modeling (Section 4). There are two possible interpretations of FP operations in
programs: a defensive version which forbids overflows and consequently apparition
of special values (Section 4.3); and a full version which allows special values to
occur (Section 4.4).

– Combination of several provers, automatic and interactive ones, to discharge VCs
(Section 5).

Our approach is implemented in the Frama-C [18] platform for static analysis of C
code, and experiments performed with this platform are presented along this paper.

2 Preliminaries: the IEEE-754 Standard

The IEEE-754 Standard [1] defines an expected behavior of FP (floating-point) compu-
tations. It describes binary and decimal formats to represent FP numbers, and specifies
the elementary operations and the comparison operators on FP numbers. It explains
when FP exceptions occur, and introduces special values to represent signed infinities
and NaNs. We summarize here the essential parts of the standard we need.

In this paper we focus on the 32-bits (type float) and 64-bits (type double)
binary formats; adaptation to other binary formats decimal format is straightforward.
Generally speaking, in any of these formats, an interpretation of the bit sequence under
the form of a sign, a mantissa and an exponent is given, so that the set of FP numbers
denote a finite subset of real numbers, called the set of representable numbers in that
format.

For each of the basic operations (add, sub, mul, div, and also sqrt, fused-multiply-
add, etc.) the standard requires that it acts as if it first computes a true real number,
and then rounds it to a number representable in the chosen format, according to some
rounding mode. The standard defines five rounding modes: if a real number x lies be-
tween two consecutive representable FP numbers x1 and x2, then the rounding of x is
as follows.
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– roundTowardPositive: the rounding of x is x2.
– roundTowardNegative: the rounding of x is x1.
– roundTowardZero: the rounding of x is x1 if x > 0 and x2 if x < 0.
– roundTiesToAway: the rounding of x is the closest to x among x1 and x2. If x is

exactly the middle of the interval [x1, x2] then the rounding is x2 if x > 0 and x1

if x < 0.
– roundTiesToEven: the rounding of x is the closest to x among x1 and x2. If x is

exactly the middle of the interval [x1, x2] then one chooses whose significand (of
canonical representatives) is even.

The standard defines three special values: −∞,+∞ and NaN. It also distinguishes
between positive zero (+0) and negative zero (-0) [19]. These numbers should be treated
both in the input and the output of the arithmetic operations as usual. For example,
(+∞) + (+∞) = (+∞), 1/(+∞) = +0, 1/(−0) = −∞, (+0)/(+0) = NaN,
(−0) × (+∞) = NaN and

√
−1 = NaN but

√
−0 = −0. Operations propagate NaN

operands to their results.

3 Specification of Floating-Point Programs

The purpose of this section is to propose extensions to specification languages in order
to specify properties of FP programs. As a basis for the specification language, we con-
sider classical first-order logic with built-in equality and arithmetic on both integer and
real numbers. We assume also built-in symbols for standard functions such as absolute
value, exponential, trigonometric functions and such. Those are typically denoted with
backslashes: \abs, \exp, etc.

3.1 The core annotation language

The core of the specification language is made of a classical Behavioral Interface Spec-
ification Language (ACSL [5] in our examples) which allows to function contracts (pre-
condition, postconditions, frame clauses, etc.), code annotations (code assertions, loop
invariants, etc.) and data invariants.

To deal with FP properties, we first make important design choices:

1. There is no FP arithmetic in the annotations: Operators +,−, ∗, / denote operations
on mathematical real numbers.

2. Consequently, there are neither rounding nor overflow that can occur in logic anno-
tations.

3. In annotations, any FP program variable, or more generally any C left-value of type
float or double, denotes the real number it represents.

The following example illustrates the impact of these choices. Notice that in our
specification language, we use the C99 notation for hexadecimal FP literals, of the
form 0xhh.hhpddwhere h are hexadecimal digits and dd is in decimal, which denotes
number hh.hh× 2dd, e.g. 0x1.Fp-4 is (1 + 15/16)× 2−4.
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/*@ requires \abs(x) <= 1.0;
@ ensures \abs(\result − \exp(x)) <= 0x1p−4;
@*/

double my_exp(double x) {
/*@ assert \abs(0.9890365552 + 1.130258690*x + 0.5540440796*x*x

@ − \exp(x)) <= 0x0.FFFFp−4;
@*/

return 0.9890365552 + 1.130258690 * x + 0.5540440796 * x * x;
}

Fig. 1. Remez approximation of the exponential function

Example 1. The C code of Fig. 1 is an implementation of the exponential function for
double precision FP numbers in interval [−1; 1], using a Remez polynomial approxi-
mation of degree 2.

The contract declared above the function contains a precondition (introduced by
keyword requires) which states that this function is to be called only for values
of x with |x| ≤ 1. The postcondition (introduced by keyword ensures) states that
the returned value (\result) is close to the real exponential, the difference being
not higher than 2−4. The function body contains an assert clause, which specifies
a property that holds at the corresponding program point. In that particular code, it
states that the expression 0.9890365552+1.130258690x+0.5540440796x2− exp(x)
evaluated as a real number, hence without any rounding, is not greater than (1−2−16)×
2−4.

The intermediate assertion thus naturally specifies the method error, induced by
the mathematical difference between the exponential function and the approximating
polynomial; whereas the postcondition takes into account both the method error and
the rounding errors added by FP computations.

3.2 Exact computations within programs

Rounding errors naturally propagates across function calls, so when reasoning about FP
programs, one wants to specify expected rounding errors on function parameters in pre-
condition. A nice way to proceed is to refer to exact computations [8]: the computations
that would be performed in an ideal mode where variables denote true real numbers.

To express such exact computations, we introduce two special constructs in annota-
tions:

– \exact(x) denotes the value of the C variable x (or more generally any C left-
value) as if it was computed in real numbers.

– \round_error(x) is a shortcut for |x− \exact(x)|

Example 2. The code of Fig. 2 is a simple implementation of the cosine function for
single precision FP numbers close to zero, based on Taylor approximation. The first
precondition assumes that the exact value of x is less than 1/32, and the second pre-
condition expresses that accumulated rounding errors on x are less than 2−20. The first
postcondition states that the exact value of the result is close to the cosine of the exact
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/*@ requires \abs(\exact(x)) <= 0x1p−5;
@ requires \round_error(x) <= 0x1p−20;
@ ensures \abs(\exact(\result) − \cos(\exact(x))) <= 0x1p−24;
@ ensures \round_error(\result) <= \round_error(x) + 0x3p−24;
@*/

float cosine(float x) {
return 1.0f − x * x * 0.5f;

}

Fig. 2. Exact computations and rounding errors in annotations

value of x (difference less than 2−24), whereas the second postcondition bounds the
new accumulated rounding error.

3.3 Special values and rounding modes

So far we did not specify anything about the rounding mode in which programs are
executed. In Java, or by default in C, the default rounding mode is NearestEven. In the
C99 standard, there is a possibility for dynamically changing it using fesetround().
For efficiency issues, is not recommended to change it often, so usually a program will
run in a fixed rounding mode set once for all.

To specify what is the expected rounding mode we chose to provide a special global
declaration in the specification language:

pragma roundingMode(value)

where value is either one of the 5 IEEE mode, or ‘variable’, meaning that it can vary
during execution. The default is thus pragma roundingMode(NearestEven).
In the ‘variable’ case, a special ghost variable is available in annotations, to denote the
current mode. Since the first case is the general one, we focus on it in this paper.

Usually, in a program involving FP computations, it is expected that special values
for infinities and NaNs should never occur. For this reason we chose that by default,
arithmetic overflow should be forbidden so that special values never occur. This first
and default situation is called the defensive model: it amounts to check that no overflow
occur for all FP operations. For programs where special values are indeed expected to
appear, we provide another global declaration

pragma allowOverflow

to switch from the default defensive model to the so-called full model. In that case, a
set of additional predicates are provided:

– \is_finite, \is_infinite, \is_NaN are unary predicates to test whether
an expression of type float or double is either finite, infinite or NaN.

– \is_positive, \is_negative are similar predicates to test for the sign.
– additional shortcuts are provided, e.g. \is_plus_infinity, etc. See [2] for

details.
– Comparison predicates between expressions of type float or double, e.g.
\le_float, \lt_float, \eq_float, etc.
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//@ pragma allowOverflow
//@ pragma roundingMode(Down)

typedef struct { double l, u; } interval;
/*@ type invariant is_interval(interval i) =
@ (\is_finite(i.l) || \is_minus_infinity(i.l)) &&
@ (\is_finite(i.u) || \is_plus_infinity(i.u)) ;
@*/

Fig. 3. Interval structure and its invariant

Since we chose a standard logic, where functions are total, caution must be taken
not to talk about the value of some x if x is not known to be finite. This is a classical
issue in specification languages [10].

Example 3. Interval arithmetic aims at computing lower bounds and upper bounds of
real expressions. It is a typical example of a FP program that uses a specific rounding
mode and makes use of infinite values.

An interval is a structure with two FP fields representing a lower and an upper
bound. It represents the sets of all the real numbers between these bounds. Fig. 3 pro-
vides a C implementation of such a structure, equipped with a data invariant [5] which
states that the lower bound might be −∞ and the upper bound might be +∞. The
two pragmas at the beginning specify the Down rounding mode and that overflows are
expected.

Addition of intervals is given in Fig. 4. A behavior specification for add is specified
via a predicate in_interval(x, i) stating that a real x belongs to an interval i.

/*@ predicate double_le_real(double x,real y) =
@ (\is_finite(x) && x <= y) || \is_minus_infinity(x);
@ predicate real_le_double(real x,double y) =
@ (\is_finite(y) && x <= y) || \is_plus_infinity(y);
@ predicate in_interval(real x,interval i) =
@ double_le_real(i.l,x) && real_le_double(x,i.u);
@*/

/*@ ensures \forall real a,b;
@ in_interval(a,x) && in_interval(b,y) ==>
@ in_interval(a+b,\result);
@*/

interval add(interval x, interval y) {
interval z;
z.l = x.l + y.l;
z.u = −(−x.u − y.u);
return z;

}

Fig. 4. Addition of intervals
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(Section 4.4)

verification
conditions

Realization
in Coq
(Section 4.2)

Interactive proof
(Coq)

Automatic proof
(SMT provers and Gappa)

Fig. 5. Architecture of our FP modeling

4 Modeling FP computations

This section is devoted to modeling FP programs and their annotations, in order to
reduce soundness to proper VCs. We proceed in four parts, which are schematized on
the right part of Fig. 5. The left part represents the current state of the Frama-C setting.

4.1 Axiomatization of FP arithmetics

IEEE-754 characterizes FP formats by describing their bit representation, but for formal
reasoning on FP computations, it is better to consider a more abstract view of binary
FP numbers: a FP number is a pair of integers (n, e), which denotes the real number
n× 2e, where n ∈ Z is the integer significand, and e ∈ Z is the exponent.

Example 4. In the float 32-bit format, the real number 0.1 is approximated by
0x1.99999Ap-4, which can be denoted by the pair of integers (13421773,−27)

Notice that this representation is not unique, since, e.g, (n, e) and (2n, e − 1) rep-
resent the same number. The first-order modelization of such numbers starts with a
datatype gen_float to denote the domain of numbers {n× 2e;n, e ∈ Z}. We declare it
abstractly, i.e., only by its name and equipped with observation functions:

– float_value : gen_float → R, which denotes the real number represented by a FP
number
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– exact_value : gen_float → R which denotes the exact part of a FP number (as
introduced in Section 3.2).

The notion of format is then modelled by a concrete datatype with 2 constructors

float_format = Single | Double

Indeed, the support for more formats amounts to add new constructors in it.
A suitable characterization of a given FP format f , for our representation with pairs

of integers, is provided by a triple (p, emin, emax) where p is a positive integer called the
precision of f , and emin and emax are two integers which define a range of exponents
for f . A number x = n×2e is representable in the format f (f -representable for short)
if n and e satisfy

|n| < 2p and emin ≤ e ≤ emax.

If x is representable, its canonical representative is the pair (n, e) satisfying the prop-
erty above for |n| maximal.4 The characterization of float format is (24,−149, 104)
and those of double is (53,−1074, 971). The largest f -representable number, denoted
MAXf , is (2p − 1)2emax . The latter is introduced in our modelling by a function

max_float : float_format→ R

axiomatized by

max_float(Single) = (224 − 1)× 2104

max_float(Double) = (253 − 1)× 2971

The five IEEE rounding modes are naturally modelled by a concrete datatype

rounding_mode = Up | Down | ToZero | NearestAway | NearestEven

In order to express whether an operation overflows or not, we introduce a notion of
unbounded representability and unbounded rounding. The aim is to express what would
happen if the exponents were not bounded.

Definition 1. A FP number x = n × 2e is unbounded f -representable for format f =
(p, emin,, emax) if:

|n| < 2p and emin ≤ e.
The unbounded f,m-rounding operation for given format f and rounding mode m

maps any real number x to the closest (according to m) unbounded f -representable
number. We denote that as roundf,m.

In our modeling we then introduce an (underspecified) logic function

round_float : float_format, rounding_mode,R→ R

which is supposed to denote unbounded f,m-rounding. Then, the following predicate
indicates when the rounding does not overflow:

no_overflow(f : float_format,m : rounding_mode, x : R) :=
|round_float(f,m, x)| ≤ max_float(f).

4 This definition allows an uniform treatment of normalized and denormalized numbers [1].
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Example 5. In double precision, computing 10200 × 10200 overflows. In our
model, it is represented by round_float(Double,NearestEven, 10200 ∗ 10200)
which is something close to 10400. It exceeds max_float(Double), thus
no_overflow(Double,NearestEven, 10200 ∗ 10200) is false.

The rounding function round_float is not directly defined. We axiomatize it by some
incomplete set of axioms. E.g., the following appear useful in the examples that will
come later: ∀f : float_format;m : rounding_mode;x, y : R,

|x| ≤ max_float(f)⇒ no_overflow(f,m, x) (1)
x ≤ y ⇒ round_float(f,m, x) ≤ round_float(f,m, y) (2)

In order to annotate FP programs that allow overflows and special values, we extend
the above logical constructions with new types, predicates and functions. A natural idea
would have been to introduce new constants to represent NaN, +∞, −∞. We do not
do that for two reasons: First, there are several NaNs, and second, this approach was
not suitable to reason with. Our proposal is to add two new functions, which are similar
to float_value to give the class of a float, either finite, infinite or NaN; and its sign. We
thus introduce two concrete types

Float_class = Finite | Infinite | NaN

Float_sign = Negative | Positive

and two additional functions

float_class : gen_float→ Float_class

float_sign : gen_float→ Float_sign

which indicate respectively the class and the sign of a gen_float.
Additional predicates are defined to test if a gen_float variable is finite, infinite,

NaN, etc. For example,

is_finite(x : gen_float) := float_class(x) = Finite

Definitions are similar for is_infinite, is_NaN, is_plus_infinity, is_minus_infinity, etc.
Comparison between two gen_float numbers is given by the predicates

le_float, lt_float, eq_float, etc. For example, for x, y : gen_float,

le_float(x, y) := (is_finite(x) ∧ is_finite(y) ∧ float_value(x) ≤ float_value(y))
∨ (is_minus_infinity(x) ∧ ! is_NaN(y))
∨ (! is_NaN(x) ∧ is_plus_infinity(y))

We must constrain our model to ensure that the sign function is consistent with the
sign of real numbers: whenever x represents a finite number, float_sign(x) should have
the sign of float_value(x). This is achieved by the following definitions

same_sign(x : gen_float, y : gen_float) := float_sign(x) = float_sign(y)
diff_sign(x : gen_float, y : gen_float) := float_sign(x) 6= float_sign(y)
same_sign_real(x : gen_float, y : R) :=

(y < 0 ∧ float_sign(x) = Negative) ∨ (y > 0 ∧ float_sign(x) = Positive)
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and an axiom: ∀x : gen_float,

(is_finite(x) ∧ float_value(x) 6= 0)⇒ same_sign_real(x, float_value(x)) (3)

4.2 A Coq realization of the axiomatic model

Our formalization of FP arithmetic is a first-order, axiomatic one. It is clearly under-
specified and incomplete.

We realized this axiomatic model in the Coq proof assistant. This realization has
two different goals: first, it allows us to prove the lemmas we added as axioms, thus
providing an evidence that our axiomatization is consistent. Second, when dealing with
a VC in Coq involving FP arithmetic, we can benefit from all the theorems proven in
Coq about FP numbers. ,

Indeed, we build upon the Gappa 5 [24] library which provides:

– a definition of binary finite FP numbers: type float2 (a pair of integers as in sec-
tion 4.1) together with a function float2R mapping (n, e) to the real n× 2e;

– a complete definition of a rounding function.

Our realization amounts to declare types float_format, rounding_mode, Float_class
and Float_sign as inductive types, and defines max_float by cases. The abstract type
gen_float is realized by a Coq record whose fields are:

– genf of type float2;
– The float_value field which is equal to (float2R genf);
– The exact_value field, of type R;
– The float_class field, of type Float_class;
– The float_sign field, of type Float_sign;
– An invariant corresponding to axiom (3).

The last field is a noticeable point: it allows us to realize properly the finite_sign axiom
above.

Finally, the round_float operator is translated into the corresponding one in Gappa.

4.3 The Defensive Model of FP Computations

To model the effect of the basic FP operations, we need now to make an important as-
sumption: we assume that both the compiler and the processor implement strict IEEE-
754: any single operation acts as if it first computes a true real number, and then rounds
the result to the chosen format, according to the rounding mode. For example, addition
of FP numbers is addf,m(x, y) = roundf,m(x + y) for x, y non-special values, where
the + on the right is the mathematical addition of real numbers. This means in par-
ticular that addition overflows whenever the rounding overflows. We will discuss this
assumption in Section 7.

5 http://lipforge.ens-lyon.fr/www/gappa/
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We model FP operations in FP programs by abstract functions, using the Hoare-style
notation

f(x1, . . . , xn) : {P (x1, .., xn)}τ{Q(x1, .., xn, result)},
which specifies that operation f expects arguments x1, . . . , xn satisfying P (this leads
to a VC at each call site) and returns a value r (denoted by keyword result) of type τ ,
such that Q(x1, .., xn, r) holds. In other words, in our modeling we do not say exactly
how an operation is performed, but only what is its intended effect.

The defensive model must ensure that no overflows and no NaNs should never oc-
cur. This can we done by a proper precondition to operations. Thus, addition of FP
numbers is modeled by an abstract function

add_gen_float(f : float_format,m : rounding_mode, x : gen_float, y : gen_float) :
{ no_overflow(f,m, float_value(x) + float_value(y)) }
gen_float
{ float_value(result) = round_float(f,m, float_value(x) + float_value(y)) ∧

exact_value(result) = exact_value(x) + exact_value(y) }

This reads as: the computation of a FP addition requires to check that the result of the
addition in R does not overflow, and it returns a generic float whose real value is the
rounding of the real result and exact value is the sum of those of the arguments. Other
operations for subtraction, unary negation and multiplication are defined similarly, and
also cast operations between float formats. The division additionally requires that the
divisor is not zero:

div_gen_float(f : float_format,m : rounding_mode, x : gen_float, y : gen_float) :
{ float_value(y) 6= 0 ∧ no_overflow(f,m, float_value(x)/float_value(y)) }
gen_float
{ float_value(result) = round_float(f,m, float_value(x)/float_value(y)) ∧

exact_value(result) = exact_value(x)/exact_value(y) }

The square root function is defined similarly, requiring that the argument is non-
negative.

Notice that, for a given operation in a program, it is known at compile-time, by
static typing, which is the expected format of the result. But on the contrary, it should
be clarified what is the rounding mode to choose: we use whatever have been declare
by the pragma roundingMode in Section 3.

A particular care has to be taken for FP constants literals: they are not necessarily
representable and they are rounded (usually at compile-time) to a gen_float according
to a certain rounding direction (usually NearestEven). This is modeled by the following
abstract function:

gen_float_of_real(f : float_format,m : rounding_mode, x : R) :
{ no_overflow(f,m, x) }
gen_float
{ float_value(result) = round_float(f,m, x) ∧ exact_value(result) = x }

This reads as: the real value of the literal must be able to be rounded without overflow,
and then the result is the gen_float, whose value is rounded.
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Once these operations are specified using those Hoare-style triples, a general pur-
pose verification conditions generator can be executed to build required proof obliga-
tions.

Example 6 (Cosine Example 2 continued). On the cosine function, 7 VCs are gener-
ated:

– 2 VCs to check representability of constants 1.0f and 0.5f.
– 3 VCs to check non-overflow of the addition and the two multiplications in the

code.
– 1 VC for each postcondition.

For example, the VC for the non-overflow of x*x has the form

∀x : gen_float, |exact_value(x)| ≤ 2−5∧
|float_value(x)− exact_value(x)| ≤ 2−20 ⇒
no_overflow(Single,NearestEven, float_value(x) ∗ float_value(x))

We will see in Section 5 how to automatically discharge such a VC.

4.4 The Full Model of FP Computations

The full model allows FP computations to overflow, and make use of special values:
NaNs, infinities and signed zeros.

To fully specify the result of FP operations, in case of overflow, we introduce an-
other predicate

overflow_value(f : float_format,m : rounding_mode, x : gen_float) :=
(m = Down⇒

(float_sign(x) = Negative⇒ is_infinite(x))∧
(float_sign(x) = Positive⇒ is_finite(x) ∧ float_value(x) = max_float(f)))

∧(m = Up⇒
(float_sign(x) = Negative⇒ is_finite(x) ∧ float_value(x) = −max_float(f))∧
(float_sign(x) = Positive⇒ is_infinite(x)))

∧(m = ToZero⇒ is_finite(x)∧
(float_sign(x) = Negative⇒ float_value(x) = −max_float(f))∧
(float_sign(x) = Positive⇒ float_value(x) = max_float(f)))

∧(m = NearestAway ∨ m = NearestEven⇒ is_infinite(x))

This predicate specifies the float class of an overflowing x depending on its sign, and
the format and the rounding mode, as indicated by the IEEE standard.

Unlike for the defensive model, there are no preconditions on the unary and binary
operations. Here we show the complete specification for the two operations of multipli-
cation and less-than comparison. See [2] for the complete description.

Multiplication is specified in Figure 6 where

is_gen_zero(x : gen_float) := float_class(x) = Finite ∧ float_value(x) = 0
product_sign(z : gen_float, x : gen_float, y : gen_float) :=

(same_sign(x, y)⇒ float_sign(z) = Positive)∧
(diff_sign(x, y)⇒ float_sign(z) = Negative)

12



mul_gen_float(f : float_format, m : rounding_mode, x : gen_float, y : gen_float) :
{ // no preconditions }
gen_float
{ ((is_NaN(x) ∨ is_NaN(y))⇒ is_NaN(result))

// NaNs arguments propagate to the result
∧ ((is_gen_zero(x) ∧ is_infinite(y))⇒ is_NaN(result))
∧ ((is_infinite(x) ∧ is_gen_zero(y))⇒ is_NaN(result))

// zero times∞ gives NaN
∧ ((is_finite(x) ∧ is_infinite(y) ∧ float_value(x) 6= 0)⇒ is_infinite(result))
∧ ((is_infinite(x) ∧ is_finite(y) ∧ float_value(y) 6= 0)⇒ is_infinite(result))

//∞ times non-zero finite gives∞
∧ ((is_infinite(x) ∧ is_infinite(y))⇒ is_infinite(result))

//∞ times∞ gives∞
∧ ((is_finite(x) ∧ is_finite(y)⇒

if no_overflow(f, m, float_value(x)× float_value(y))) then
(is_finite(result)∧
float_value(result) = round_float(f, m, float_value(x)× float_value(y)))

// finite times finite without overflow
else (overflow_value(f, m, result)))

// finite times finite with overflow
∧ product_sign(result, x, y)

// in any case, sign of result is product of signs
∧ exact_value(result) = exact_value(x)× exact_value(y)
}

Fig. 6. Multiplication in the full model

lt_gen_float(x : gen_float, y : gen_float) :
{// no preconditions}
bool
{if result then not is_NaN(x) ∧ not is_NaN(y) ∧

( (is_finite(x) ∧ is_finite(y) ∧ float_value(x) < float_value(y))∨
(is_minus_infinity(x) ∧ is_plus_infinity(y))∨
(is_minus_infinity(x) ∧ is_finite(y))∨
(is_finite(x) ∧ is_plus_infinity(y)))

else is_NaN(x) ∨ is_NaN(y)∨
(is_finite(x) ∧ is_finite(y) ∧ float_value(x) ≥ float_value(y)) ∨
is_plus_infinity(x) ∨ is_minus_infinity(y)

}

Fig. 7. abstract less-than in full model

the last predicate encoding the usual rule for sign of a product.

Other operations are specified similarly. Comparison operators are also significantly
complicated to specify, this is illustrated by the specification of < given in Figure 7.
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5 Discharging proof obligations

Our aim is to use as many theorem provers as possible. However, we must con-
sider provers that are able to understand first-order logic with integer and real arith-
metic. Suitable automatic provers are those of the SMT-family (Satisfiability Modulo
Theories) [26] which support first-order quantification, such as Z3 [14], CVC3 [4],
Yices [16], Alt-Ergo [12]. Due to the high expressiveness of the logic, these provers
are necessarily incomplete. Hence we may also use interactive theorem provers, such
as Coq and PVS.

Additionally, recall that our modeling involves an uninterpreted rounding function
round_float. The Gappa tool [25] is an automatic prover, which specifically handles
formulas made of equalities and inequalities over expressions involving real constants,
arithmetic operations, and the round_float operator.

All the provers mentioned above are available as back-ends for the Frama-C envi-
ronment and its Jessie/Why plugin [17]. Our experiments are conducted with those.

Example 7 (Example 1 continued). The VCs for our Remez approximation of exponen-
tial are the following:

– 3 VCs for the representability of constants 0.9890365552; 1.130258690
and 0.5540440796 in double format. These are proven by Gappa and by SMT
solvers. SMT solvers make use of the axiom (1) on round_float.

– 5 VCs for checking that the three multiplications and the two additions do not
overflow. These are automatically proven by Gappa. This demonstrates the power
of Gappa to check non-overflow of FP computations in practice.

– 1 VC for the validity of the post-condition. This is also proven by Gappa, as a
consequence of the assertion. In other words, whenever Gappa is given the method
error, it is able to add the rounding error to deduce the total error.

– 1 VC for the validity of the assertion stating the method error. This is not proven
by any automatic prover. It corresponds to the VC:

∀x : gen_float, |float_value(x)| ≤ 1.0⇒
|0.9890365552 + 1.130258690× float_value(x) + 0.5540440796×

float_value(x) ∗ float_value(x)− exp(float_value(x))| ≤ (1− 2−16)× 2−4

Indeed, float_value(x) is just an arbitrary real number here, and that formula is a
pure real arithmetic formula. It is expected that no automatic prover prove it since
they do not know anything about the exp function. However, this VC can be proven
valid using the Coq proof assistant, in a very simple way (2 lines of proof script to
write) thanks to its interval tactic6 [25], which is able to bound mathematical
expressions using interval arithmetic:

intuition.
interval with (i_bisect_diff (float_value x),i_nocheck).

Example 8 (Cosine example continued).
6 http://www.msr-inria.inria.fr/~gmelquio/soft/coq-interval/
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/*@ lemma abs_triangle: \forall real x,y,z;
@ \abs(x−y) <= \abs(x−z)+\abs(z−y);
@ lemma cos_lipschitz: \forall real x,y;
@ \abs(\cos(x)−\cos(y)) <= \abs(x−y);
@*/

/*@ requires \abs(\exact(x)) <= 0x1p−5;
@ requires \round_error(x) <= 0x1p−20;
@ ensures \abs(\exact(\result) − \cos(\exact(x))) <= 0x1p−24;
@ ensures \round_error(\result) <= \round_error(x) + 0x3p−24;
@*/

float cosine(float x) {
//@ assert a1: \abs(x) <= 0x1.0002p−5;
float r = 1.0f − x * x * 0.5f;
//@ assert a2: \abs(\exact(r) − \cos(\exact(x))) <= 0x1p−24;
//@ assert a3: \abs(1.0 − x*x*0.5 − \cos(x)) <= 0x1p−24;
//@ assert a4: \abs(r − \cos(x)) <= 0x1p−23;
return r;

}

Fig. 8. Additional lemmas and code assertions for the cosine example

To acheive the proofs of Example 2, we had to provide some help to provers under
the form of extra lemmas and also a few assertions in the code, see Figure 8. The
verification conditions are now:

– Lemma abs_triangle is proved by most SMT provers.
– Lemma cos_lipschitz is proved in Coq.
– Assertion a1 is proved by SMT provers from lemma abs_triangle and pre-

conditions.
– Assertions a2 and a3 are proved by interval tactic in Coq.
– Assertion a4 is proved by Gappa using a3.
– The 5 VCs for checking non-overflow are proved automatically by Gappa (using

assertion a1)
– The first postcondition is proved by SMT provers (from a2).
– The second postcondition is proved by the Z3 prover, thanks to both lemmas and

assertions a4 and a2.

Example 9 (Interval example continued). Although the code for interval addition
(Fig. 4) is very simple, its verification was not easy because it involves a large amount
of different cases to distinguish, depending on whether interval bounds are finite or
infinite, and whether an overflow occurs or not. Our first attempt was to perform the
proof entirely within Coq: it was very long but indeed without particular difficulty so
that clearly automatic provers should do most of it. We instead tried to find intermediate
lemmas to give to SMT solvers to help them. We succeeded to prove all VCs automat-
ically with SMT provers using the following lemmas: for all format f , modes m1,m2

and real x:
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round_float(f,Up, x) ≥ x
round_float(f,Up,−x) = −round_float(f,Down, x)

round_float(f,m1, round_float(f,m2, x)) = round_float(f,m2, x)

As before, these can be checked valid using our Coq realization.

Example 10 (Interval multiplication).
To go further, we proved also the multiplication of intervals. Its code is given in

Fig. 9. Notice the large number of branches. This code calls some intermediate func-
tions on intervals from Fig. 10. This was difficult to verify. First, we had to find proper
contracts for the intermediate functions: see the preconditions we need about signs for
mul_up and mul_dn. Second the number of cases is even more larger than for addi-
tion. We got a total of 143 VCs. Each of them has a complex propositional structure,
leading to consider a large number of subcases. Like for addition, by investigating the
VCs which were not proved automatically, we were able to discover a few lemmas that
helped the automatic provers: for all reals x, y, z and t:

(0 ≤ x ≤ z ∧ 0 ≤ y ≤ t)⇒ x ∗ y ≤ z ∗ t
(0 ≤ z ≤ x ∧ y ≤ t ∧ y < 0)⇒ x ∗ y ≤ z ∗ t
(x ≤ z ≤ 0 ∧ y ≤ t ∧ y < 0)⇒ z ∗ t ≤ x ∗ y

With that all VCs are automatically proved. We clearly benefit from the ability of SMT
provers to deal with all the cases of the complex propositional structures.

6 Related Works

There exist several formalizations of FP arithmetic in various proof environments: two
variants in Coq [13, 24] and one in PVS7 exclude special values; one in ACL2 [22] and
one in HOL-light [21] also deal with special values. Compare to those, our purely first-
order axiomatization has the clear disadvantage of being incomplete, but has the advan-
tage of allowing use of off-the-shelf automatic theorem provers. Our approach allows to
incorporate FP reasoning in environments for program verification for general-purpose
programming languages like C or Java.

In 2006, Leavens [23] described some pitfalls when trying to incorporate FP special
values and specifically NaN values in a BISL like JML for Java. In its approach, FP
numbers, rounding and such also appear in annotations, which cause several issues and
traps for specifiers. We argue that our approach, using true real numbers instead in
annotations, solves these kind of problems.

In 2006, Reeber & Sawada [27] used the ACL2 system together with a automated
tool to verify a FP multiplier unit. Although their goal is at a significantly different con-
cern (hardware verification instead of software behavioral properties) it is interesting to
remark that they came to a similar conclusion, that using interactive proving alone is
not practicable, but incorporating an automatic tool is successful.

7 http://shemesh.larc.nasa.gov/fm/ftp/larc/PVS-library/
float-details.html
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/*@ ensures \forall real a,b;
@ in_interval(a,x) && in_interval(b,y) ==>
@ in_interval(a*b,\result);
@*/

interval mul(interval x, interval y) {
interval z;
if (x.l < 0.0)
if (x.u > 0.0)
if (y.l < 0.0)
if (y.u > 0.0) {
z.l = min(mul_dn(x.l, y.u), mul_dn(x.u, y.l));
z.u = max(mul_up(x.l, y.l), mul_up(x.u, y.u)); }

else { z.l = mul_dn(x.u, y.l); z.u = mul_up(x.l, y.l); }
else
if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.u); z.u = mul_up(x.u, y.u); }

else { z.l = 0.0; z.u = 0.0; }
else
if (y.l < 0.0)
if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.u); z.u = mul_up(x.l, y.l); }

else { z.l = mul_dn(x.u, y.u); z.u = mul_up(x.l, y.l); }
else
if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.u); z.u = mul_up(x.u, y.l); }

else { z.l = 0.0; z.u = 0.0; }
else
if (x.u > 0.0)
if (y.l < 0.0)
if (y.u > 0.0)
{ z.l = mul_dn(x.u, y.l); z.u = mul_up(x.u, y.u); }

else { z.l = mul_dn(x.u, y.l); z.u = mul_up(x.l, y.u); }
else
if (y.u > 0.0)
{ z.l = mul_dn(x.l, y.l); z.u = mul_up(x.u, y.u); }

else { z.l = 0.0; z.u = 0.0; }
else { z.l = 0.0; z.u = 0.0; }

return z;
}

Fig. 9. Multiplication of intervals

7 Conclusions and further work

Our methodology for verification of properties of FP programs is based on a first-order
logic modeling of FP numbers, and interpretations of FP computations as Hoare-style
pre- and postconditions. This approach is suitable for deductive verification tools such
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/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ ensures \le_float(\result,x) && \le_float(\result,y);
@ ensures \eq_float(\result,x) || \eq_float(\result,y);
@*/

double min(double x, double y) { return x < y ? x : y; }

/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ ensures \le_float(x,\result) && \le_float(y,\result);
@ ensures \eq_float(\result,x) || \eq_float(\result,y);
@*/

double max(double x, double y) { return x > y ? x : y; }

/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ requires (\is_infinite(x) || \is_infinite(y))
@ ==> \sign(x) != \sign(y);
@ requires (\is_infinite(x) && \is_finite(y)) ==> y != 0.0;
@ requires (\is_infinite(y) && \is_finite(x)) ==> x != 0.0;
@ ensures double_le_real(\result,x*y);
@ ensures (\is_infinite(x) || \is_infinite(y)) ==>
@ \is_minus_infinity(\result);
@*/

double mul_dn(double x, double y) { return x*y; }

/*@ requires !\is_NaN(x) && !\is_NaN(y);
@ requires (\is_infinite(x) || \is_infinite(y))
@ ==> \sign(x) == \sign(y);
@ requires (\is_infinite(x) && \is_finite(y)) ==> y != 0.0;
@ requires (\is_infinite(y) && \is_finite(x)) ==> x != 0.0;
@ ensures real_le_double(x * y,\result);
@ ensures (\is_infinite(x) || \is_infinite(y)) ==>
@ \is_plus_infinity(\result);
@*/

double mul_up(double x, double y)
{ double a=−y;
//@ assert \is_finite(y) ==> \is_finite(a) && a == − y ;
double b=x*a;
double z=−b;
//@ assert \is_finite(b) ==> \is_finite(z) && z == − b ;
return z;

}

Fig. 10. Intermediate functions on intervals

as Spec#/Boogie, VCC/Boogie, ESCJava2, KeY, Frama-C/Why. It allows to prove com-
plex properties of FP programs, specified in a very expressive specification language.

In Section 5, we have seen that SMT provers are not very good at proving properties
about rounding. Our attempt to add more axioms in our modeling did not succeed, and
the Gappa tool was necessary to prove those properties. An interesting future work is
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to turn the Gappa approach into some specific built-in theory for SMT solvers. More
generally, as shown by our examples, the success of our approach relies on the ability
to mix automatic and interactive theorem proving. Ideally, one would like to process a
proof inside an interactive environment like Coq, where at any time, on every subgoal,
one could call powerful dedicated provers like SMT provers, Gappa for rounding errors,
or interval arithmetic.

Our approach provides two models of FP operations: a defensive one which requires
to prove the absence of overflow, and a full model allowing overflows and presence of
special values. Since the pure logical part of the modeling is shared, it is clearly possible
to mix the two possible settings in a given program: most functions should be overflow-
free whereas a few of them might produce overflows. This could be done in practice
by providing a specific clause in the annotation language. However, this mixing should
be done carefully, e.g., if a function allowing overflow calls a function supposed to
work in defensive mode, appropriate preconditions of the form is_finite(x) for each
float parameter x should be added.
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