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Abstract. On recent architectures, a numerical program may give dif-
ferent answers depending on the execution hardware and the compilation.
Our goal is to formally prove properties about numerical programs that
are true for multiple architectures and compilers. We propose an ap-
proach that states the rounding error of each �oating-point computation
whatever the environment. This approach is implemented in the Frama-
C platform for static analysis of C code. A case study from avionics is
given and is entirely and automatically proved.

1 Introduction

Floating-point computations often appear in current critical systems from do-
mains such as physics, aerospace system, energy, etc. For such systems, hard-
wares and softwares play an important role.

All current microprocessor architectures support IEEE-754 �oating-point
arithmetic [1]. However, there exists some architecture-dependent issues. For
example, the x87 �oating-point unit uses the 80-bit internal �oating-point regis-
ters on the Intel platform. The fused multiply-add (FMA) instruction, supported
by the PowerPC and the Intel Itanium architectures, computes xy ± z with a
single rounding. These issues can introduce subtle inconsistencies between pro-
gram executions. This means that the �oating-point computations of a program
running on di�erent architectures may be di�erent [2].

Static analysis is an approach for checking a program without running it.
Deductive veri�cation techniques which perform static analysis of code, rely on
the ability of theorem provers to check validity of formulas in �rst-order logic
or even more expressive logics. They usually come with expressive speci�cation
languages such as JML [3, 4] for Java, ACSL [5] for C, Spec# [6] for C#, etc. to
specify the requirements.

Floating-point arithmetic has been formalized �rstly by Barret [7]. Since
then, many works have been done to formally prove hardware components or
algorithms [8�13]. There exists less works on specifying and proving behavioral
properties of �oating-point programs in deductive veri�cation systems. A work
on �oating-point in JML for Java is presented in 2006 by Leavens [14]. Another
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proposal has been made in 2007 by Boldo and Filliâtre [15]. Ayad extended this
to increase genericity and handle exceptional behaviors [16].

However, these works follow only strict IEEE-754 standard, with neither
FMA, nor extended registers. Correctly de�ning the semantics of the common
implementations of �oating-point is tricky, because semantics may change ac-
cording to arguments of compilers and processors. As a result, formal veri�ca-
tion of such program is a challenge. The purpose of this paper is to present an
approach to prove numerical programs whatever the compiler and the processor.
We nevertheless assume that the compiler does preserve the order of operations
of the C language. Our approach is implemented in the Frama-C platform3 as-
sociated with Why [17] for static analysis of C code.

This paper is organized as follows. Section 2 presents some basic knowledge
needed about �oating-point arithmetic, including the x87 unit and the FMA.
Section 3 presents a bound on the rounding error of a computation in all possible
cases (extended registers, FMA). A case study from avionics is presented in
Section 4. This example illustrates our approach and shows the di�erence of the
results between the usual (but maybe incorrect) model and our approach.

2 Floating-point Arithmetic

2.1 The IEEE-754 �oating-point standard

The IEEE-754 standard [1] for �oating-point arithmetic was developed to de�ne
formats and behaviors for �oating-point numbers and computations. Five basic
formats are de�ned in this standard: three binary formats, with encodings in
length of 32, 64 and 128 bits and two decimal formats, with encodings in length
of 64 and 128 bits. We will only consider binary formats here, as they concentrate
all the problems. Our ideas could be re-used in decimal formats.

A �oating-point number x in a format (p, emin, emax), where emin and emax

are the minimal and maximal unbiased exponents and p is the precision, is
represented by the triplet (s,m, e) so that

x = (−1)s × 2e ×m (1)

where

� s ∈ {0, 1} is the sign of x
� e is any integer emin ≤ e ≤ emax

� m (0 ≤ m < 2) is the signi�cand of the representation. It has one bit before
the radix point and at most p− 1 bits after.

We only discuss in this paper the binary format with encoding in 64 bits (usu-
ally double type in C or Java language), that satis�es (1) with (53,−1022, 1023).

In our de�nition, some �oating-point numbers may have several represen-
tations (s,m, e). In the IEEE-754 standard, the representation is unique as it
moreover requires assumptions on the signi�cand.

3 http://frama-c.cea.fr/
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More precisely, a number with magnitude greater than or equal to 2emin is
called normal and is required to have a signi�cand greater than or equal to 1.
Its signi�cand then has the form: 1.m1m2m3...mp−1 (mi ∈ {0, 1}).

Smaller numbers are called subnormal and are required to have a signi�cand
smaller than 1. Its signi�cand has the form: 0.m1m2m3...mp−1 (mi ∈ {0, 1}).

We call normal range the set of real numbers which round to a normal
�oating-point number and subnormal range the set of numbers which round
to a subnormal number.

When approximating a real number x by its rounding ◦(x), a rounding error
happens. We have two types of rounding error: relative error and absolute error.
Note that in normal range, the absolute error varies in a wide range, we thus
cannot determine an acceptable bound of absolute error. In this case, the relative
error is a good choice. The value to bound ε(x) is

ε(x) =
∣∣∣∣x− ◦(x)x

∣∣∣∣ . (2)

We here consider only round-to-nearest mode, that includes both the default
rounding mode (round-to-nearest, ties to even) and the new round-to-nearest,
ties away from zero, of the revision of the IEEE-754 standard. In radix 2 and
round-to-nearest mode, this relative error is known [18] to be bounded by

ε(x) ≤ 2−p. (3)

In subnormal range, the value of the relative error becomes large (until 0.5).
In that case, we prefer a bound based on the absolute error:

|x− ◦(x)| ≤ 2emin−p. (4)

We note that if the arithmetic operation being performed is addition or sub-
traction, a subnormal result implies an exact result [18], so that |x− ◦(x)| = 0.
The formula (4) also covers this equation. In order to simplify the cases and to
have a unique formula for all basic operations, we ignore this special case and
use formula (4) as general formula of rounding error in subnormal range.

2.2 Floating-point computations depend on the architecture

With the same program containing �oating-point computations, the result may
be di�erent depending to the compiler and the processor. We present in this
section some architecture-dependent issues resulting in such problems.

A �rst cause is the fact that some processors (IBM PowerPC or Intel/HP
Itanium) have a fused multiply-add (FMA) instruction. Speci�ed in the latest
revision of the IEEE-754 standard, the FMA operation computes (x× y)± z as
if with unbounded range and precision, and rounds only once to the destination
format. This operation can speed up and improve the accuracy of dot product,
matrix multiplication and polynomial evaluation, but few processors now sup-
port it. But how should a× b+ c× d be computed? When a FMA is available,
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the compiler may choose either ◦(a × b + ◦(c × d)), or ◦(◦(a × b) + c × d), or
◦(◦(a× b) + ◦(c× d)). And all those computations may give di�erent results.

Another well-known cause of discrepancy happens in the IA32 architecture
(Intel 386, 486, Pentium etc.) [2]. The IA32 processors feature a �oating-point
unit called "x87". This unit has 80-bit registers in "double extended" format
(64-bit signi�cand and 15-bit exponent), often associated to the long double C
type. When using the x87 mode, the intermediate calculations are computed and
stored in the x87 registers (80 bits). The �nal result is rounded to the destination
format. This means that the result may be more accurate as the precision of the
intermediate computations (64) is greater than the IEEE-754 double precision
(53). It may also be di�erent as the exponent range is also larger than in the
usual double format.

Extended registers may also lead to double rounding, where �oating-point
results are rounded twice. For instance, the operations are computed in the
long double type of x87 �oating-point registers, then rounded to IEEE double
precision type for storage in memory. Double rounding may yield di�erent result
from direct rounding to the destination type.

An example is given in Figure 1: we assume x is near the midpoint c of
two consecutive �oating-point numbers a and b in the destination format. Using
round-to-nearest, with single rounding, x is rounded to b. However, with double
rounding, it may �rstly be rounded towards the middle c and then be rounded
to a (if a is even). The results obtained in the two cases are di�erent.

xa bc

Fig. 1. Bad case for double rounding

This is illustrated by the program of Figure 2. In this example, y = 2−53 +
2−64 and x are exactly representable in double precision. The values 1 and 1 +
2−52 are two consecutive �oating-point numbers. With strict IEEE-754 double
precision computations for double type, the result obtained is z = 1 + 2−52.
Otherwise, on IA32, if the computations on double is performed in the long

double type inside x87 unit, then converted to double precision, z = 1.0.
Another example which gives inconsistencies in result between x87 and SSE

is presented in Figure 3. This example will be presented and reused in Section 4.
In this example, we have a function int sign(double x) which returns a value
which is either −1 if x < 0, or 1 if x ≥ 0. The function int eps_line(double

sx, double sy, double vx, double vy) then makes a direction decision de-
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int main ( ){
double x = 1 . 0 ;

double y = 0x1p−53 + 0x1p−64; // y = 2−53 + 2−64

double z = x + y ;
p r i n t f ( "z=%a\n" , z ) ;

}

Fig. 2. A simple program giving di�erent answers depending on the architecture.

int s i gn (double x ) {
i f ( x >= 0) return 1 ;
e l s e return −1;

}

int eps_l ine (double sx , double sy , double vx , double vy ) {
int s1 , s2 ;

s1=s ign ( sx∗vx+sy∗vy ) ;
s2=s ign ( sx∗vy−sy∗vx ) ;
return s1∗ s2 ;

}

int main ( ){

double sx = −0x1 .0000000000001p0 ; // sx = −1− 2−52

double vx = −1.0;

double sy = 1 . 0 ;

double vy = 0x1 . f f f f f f f f f f f f f p −1; // vy = 1− 2−53

int result = eps_l ine ( sx , sy , vx , vy ) ;
p r i n t f (" Result = %d\n" , result ) ;

}

Fig. 3. A more complex program giving di�erent answers depending on the architec-
ture.

pending on the sign of a few �oating-point computations. We execute this pro-
gram on SSE unit and obtain that Result = 1. When it is performed on IA32
inside x87 unit, the result is Result = -1.

3 Hardware-independent bounds for �oating-point

computations using rounding errors

As the result of �oating-point computations may depend on the compiler and
the architecture, static analysis is the perfect tool, as it will verify the program
without running it, therefore without enforcing the architecture or the compiler.
But we need a very generic approach that allows us to give both correct and
interesting properties on a �oating-point computation without knowing which
computation will be in fact executed. The chosen approach is to consider only
the rounding error. This will be insu�cient in some cases, but we believe this
can give useful and su�cient results in most cases.
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3.1 Rounding error in 64-bit rounding, 80-bit rounding and double

rounding

We know that the choice between 64-bit, 80-bit and double rounding is the main
reason that causes the discrepancies of result. We prove a rounding error bound
that is valid whatever the hardware, and the chosen rounding.

We denote by ◦64 the round-to-nearest in the double 64-bit type. We denote
by ◦80 the round-to-nearest to the extended 80-bit registers.

Theorem 1. For a real number x, let �(x) be either ◦64(x), or ◦80(x), or the
double rounding ◦64(◦80(x)). Then,

If |x| ≥ 2−1022 then

(∣∣∣∣x−�(x)
x

∣∣∣∣ ≤ 2050× 2−64 and |�(x)| ≥ 2−1022

)
(5)

else if |x| ≤ 2−1022 then
(
|x−�(x)| ≤ 2049× 2−1086 and |�(x)| ≤ 2−1022

)
(6)

Case 1, �(x) = ◦64(x): Rounding error in 64-bit rounding

The smallest positive number in normal range is 2−1022 so the value 2−1022 is
the frontier of normal/subnormal cases. The comparison of the natural rounding
errors and the Theorem 1 is illustrated in Figure 4.

64

Theorem 1

0 2−1022

+∞

|x−�(x)| ≤ 2049× 2−1086

|x− ◦64(x)| ≤ 2−1075
˛̨̨̨
x− ◦64(x)

x

˛̨̨̨
≤ 2−53

˛̨̨̨
x−�(x)

x

˛̨̨̨
≤ 2050× 2−64

Fig. 4. Rounding error in 64-bit rounding vs. Theorem 1

Normal range. Based on the formula (3), if we assume |x| ≥ 2−1022, the
rounding error is

ε(x) =
∣∣∣∣x− ◦64(x)x

∣∣∣∣ ≤ 2−53 (7)

We see that 2−53 = 2048× 2−64 is less than 2050× 2−64. Moreover, we know
that round-to-nearest mode is monotone. Thus, if |x| ≥ 2−1022 then we have
|�(x)| ≥ 2−1022. The �rst case of Theorem 1 is held.

Subnormal range. Let η64 = 2−1074 be the smallest positive subnormal
number. For subnormal numbers, from formula (4), the rounding error is repre-
sented by the absolute error as follows, if |x| ≤ 2−1022:

|x− ◦64(x)| ≤
1
2
η64 (8)
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The bound
1
2
η64 = 2048×2−1086 is less than 2049×2−1086. In addition, as we

have discussed in normal range, round-to-nearest mode is monotone. Therefore,
if |x| ≤ 2−1022 then we have |�(x)| ≤ 2−1022. The second case of Theorem 1 is
also held. The correctness of Theorem 1 is proved in 64-bit rounding.

Case 2, �(x) = ◦80: Rounding error in 80-bit rounding

Remind that the 80-bit registers used in x87 have 64-bit signi�cand and 15-
bit exponent. Thus, the smallest positive number in normal range is then 2−16382

and the smallest positive subnormal number is η80 = 2−16445.
As we have discussed in the 64-bit rounding, 2−1022 is also a �oating-point

number in 80-bit rounding and the round-to-nearest mode is monotone. Then, if
|x| ≤ 2−1022, then |◦80(x)| ≤ 2−1022. And if |x| ≥ 2−1022, then |◦80(x)| ≥ 2−1022.

The bounds for rounding errors are calculated as illustrated in Figure 5.

80

Theorem 1

0 2−1022

2−16382 +∞

|x−�(x)| ≤ 2049× 2−1086

|x− ◦80(x)| ≤ 2−1086
˛̨̨̨
x− ◦80(x)

x

˛̨̨̨
≤ 2−64

˛̨̨̨
x−�(x)

x

˛̨̨̨
≤ 2050× 2−64

Fig. 5. Rounding error in 80-bit rounding vs. Theorem 1

Subnormal range. For |x| < 2−16382, the rounding error in this case is
determined by the absolute error

|x− ◦80(x)| ≤
1
2
η80 (9)

Normal range. For |x| ≥ 2−16382, based on (3), the relative error is:

ε(x) =
∣∣∣∣x− ◦80(x)x

∣∣∣∣ ≤ 2−64 (10)

We then split into the following cases:

� If |x| ≥ 2−1022, then x is a normal number in 80-bit rounding. Moreover, the
bound 2−64 in (10) is much smaller than the 2050× 2−64 of Theorem 1.

� If 2−16382 ≤ |x| ≤ 2−1022, then∣∣∣∣x− ◦(x)x

∣∣∣∣ ≤ 2−64 ⇒ |x− ◦(x)| ≤ 2−64 × |x|

⇒ |x− ◦(x)| ≤ 2−64 × 2−1022 = 2−1086 (11)

In conclusion, all bounds are much smaller than that of Theorem 1 so The-
orem 1 is held in 80-bit rounding.
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Case 3, �(x) = ◦64(◦80(x)): Rounding error in double rounding

As ◦64 and ◦80 are monotone, � is also monotone. And as 2−1022 is a �oating-
point number both in 64 and in 80 bits, if |x| ≤ 2−1022, then |◦64(◦80(x))| ≤
2−1022. And if |x| ≥ 2−1022, then |◦64(◦80(x))| ≥ 2−1022.

The bounds for rounding errors are calculated as illustrated in Figure 6.

64/80

Theorem 1

0

2−10222−16382 +∞

|x− ◦64(◦80(x))| ≤ 2049× 2−1086

|x−�(x)| ≤ 2049× 2−1086

˛̨̨̨
x− ◦64(◦80(x))

x

˛̨̨̨
≤ 2050× 2−64

˛̨̨̨
x−�(x)

x

˛̨̨̨
≤ 2050× 2−64

Fig. 6. Rounding error in double rounding vs. Theorem 1

Normal range.We �rst assume that |x| ≥ 2−1022, and that fact implies that
|◦80(x)| ≥ 2−1022 and is also in the normal range for the 64-bit rounding. We
then bound the relative error by some computations and the previous formulas:

∣∣∣∣x− ◦64(◦80(x))x

∣∣∣∣ ≤ ∣∣∣∣x− ◦80(x)x

∣∣∣∣ +
∣∣∣∣◦80(x)− ◦64(◦80(x))x

∣∣∣∣
≤

∣∣∣∣x− ◦80(x)x

∣∣∣∣ +
∣∣∣∣◦80(x)− ◦64(◦80(x))◦80(x)

× ◦80(x)
x

∣∣∣∣
≤

∣∣∣∣x− ◦80(x)x

∣∣∣∣ +
∣∣∣∣◦80(x)− ◦64(◦80(x))◦80(x)

× (
◦80(x)− x

x
+ 1)

∣∣∣∣
≤

∣∣∣∣x− ◦80(x)x

∣∣∣∣ +
∣∣∣∣◦80(x)− ◦64(◦80(x))◦80(x)

∣∣∣∣× (∣∣∣∣◦80(x)− xx

∣∣∣∣ + 1
)

≤ 2−64 + 2−53 × (2−64 + 1)

≤ 2050× 2−64

Of course, we are in the worst case and the value of 2050 × 2−64 is exactly
the bound of Theorem 1.

Subnormal range. We now assume that |x| ≤ 2−1022. The absolute error
to bound is |x− ◦64(◦80(x))|. We have two cases depending on whether x is in
the 80-bit normal or subnormal range.

If x is in the 80-bit subnormal range, then |x| < 2−16382 and

|x− ◦64(◦80(x))| ≤ |x− ◦80(x)|+ |◦80(x)− ◦64(◦80(x))|
≤ 2−1086 + 2−1075

≤ 2049× 2−1086
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If x is in the 80-bit normal range, then 2−16382 ≤ |x| < 2−1022 and

|x− ◦64(◦80(x))| ≤ |x− ◦80(x)|+ |◦80(x)− ◦64(◦80(x))|
≤ 2−64 × |x|+ 2−1075

≤ 2−1086 + 2−1075

≤ 2049× 2−1086

Again, this is the worst case and this bound is the one of the Theorem 1.
Theorem 1 is now proved in double rounding.

In conclusion, Theorem 1 is proved for all three roundings.

3.2 Proof in Coq

We use Coq with the help of the Gappa tactic [19] to prove the correctness of
Theorem 1. The corresponding theorem in Coq is presented in Figure 7.

For technical reasons, we add the requirement that |x| ≤ 235000. This value
is large enough to satisfy all operations (addition, subtraction, multiplication,
division, square root, negation and absolute value) in all types (64 or 80). We
used 228 lines of Coq code to prove it, but the execution time is considerable
(more than 7.5 hours). This is due to the 235000 value that leads to very slow
computations: if we replace it with 21024, the proof needs less than 11 seconds
to be checked.

The Coq proof is exactly the one described in the preceding Section. It is
not very di�cult, but needs many computations and a very large number of
subcases. The formal proof gives a very strong guarantee on this result, allowing
its use without doubt in the Frama-C platform.

Theorem post_cond i t ions_correc tnes s : f o r a l l x f ,
Rabs x <= powerRZ 2 (35000) −>
( f = gappa_rounding ( rounding_f loat roundNE 53 (1074) ) x

\/ f = gappa_rounding ( rounding_f loat roundNE 64 (16445)) x
\/ f = gappa_rounding ( rounding_f loat roundNE 53 (1074) )

( gappa_rounding ( rounding_f loat roundNE 64 (16445)) x )
\/ f = x)
−>
(powerRZ 2 (−1022) <= Rabs x −>

( Rabs ( ( f−x )/x ) <= 2050 ∗ powerRZ 2 (−64)
/\ powerRZ 2 (−1022) <= Rabs f ) )

/\
(Rabs x <= powerRZ 2 (−1022) −>

( Rabs ( f−x ) <= 2049 ∗ powerRZ 2 (−1086)
/\ Rabs f <= powerRZ 2 (−1022))) .

Fig. 7. Coq theorem certifying the correctness of Theorem 1



X

3.3 Hardware and compiler-independent proofs of numerical

programs

Rounding error in presence of FMA

Theorem 1 gives rounding error formulas for various roundings denoted by
� (64-bit, 80-bit and double rounding). Now, let us consider the FMA that
computes x × y + z with one single rounding. The question is whether a FMA
was used in a computation. We therefore need an error bound that covers all the
possible uses of a FMA.

The idea is very simple: we consider a FMA as a rounded multiplication
followed by a rounded addition. And we only have to consider another possible
�rounding� that is the identity: �(x) = x.

This speci�c �rounding� magically solves the FMA problem: the result of a
FMA is then �1(x×y+z), that may be considered as �1(�2(x×y)+z) with �2

being the identity. So we handle in the same way all operations even in presence
of FMA or not, by considering one rounding for each basic operation (addition,
multiplication. . . ).

Of course, this �rounding� easily veri�es the formulas of Theorem 1 as we
only consider rounding error. So, by considering the identity as a rounding like
the others, we handle all the possible uses of the FMA in the same way as we
handle multiple roundings.

Proofs of programs

Theorem 2. If we assume the formulas of Theorem 1 on each operation (ad-
dition, subtraction, multiplication, division, square root, negation and absolute
value), the �nal rounding error is correct whatever the architecture and the com-
piler, provided the compiler preserves the order of operations.

One of the main point of the IEEE-754 standards [1] is that: �Each of the
computational operations that return a numeric result speci�ed by this standard
shall be performed as if it �rst produced an intermediate result correct to in�nite
precision and with unbounded range, and then rounded that intermediate result,
if necessary, to �t in the destination's format�. Using this property, our approach
leads to a way to formally de�ne what is the result of a hardware-independent
computation: it is a value that veri�es the formulas of Theorem 1.

We have put these formulas as postconditions of each �oating-point opera-
tion (addition, subtraction, multiplication, division, square root, negation and
absolute value) in the Frama-C platform to look into the rounding error of the
whole program. This has been done from the basis of [16], by creating a new
pragma called multirounding that implements this.

Note that absolute value and negation may produce a rounding if we take the
absolute value or the negation of a 80-bit number to put into a 64-bit number.
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4 A Case Study

We present a case study containing �oating-point computations to illustrate
our approach. The original code is in Figure 3 and may give various answers
depending on the architecture/compilation. This example is part of KB3D [20]4,
an aircraft con�ict detection and resolution program. The idea of this case study
is to make a decision corresponding to value −1 and 1 to decide if the plane will
go to its left or its right. Note that KB3D is formally proved correct using PVS
and assuming the calculations are exact [20]. However, in practice, when the
value of the computation is small, the result may be inconsistent or incorrect.

We modi�ed the program to provide an answer that may be 1, −1 or 0. The
program is in Figure 8 is that, if the result is nonzero, then it is correct (meaning
the same as if the computations were done on real numbers). If the result is 0,
rounding errors may have jeopardized the result and the program is unable to
give a certi�ed answer.

4 See also http://research.nianet.org/fm-at-nia/KB3D/.

#pragma Jess i eF loatMode l ( mult i rounding )
#pragma Je s s i e In t ege rMode l (math)

//@ logic integer l_s ign ( real x ) = (x >= 0 . 0 ) ? 1 : −1;

/∗@ requires e1<= x−\exact ( x ) <= e2 ;
@ ensures \abs (\ result ) <= 1 &&
@ (\ result != 0 ==> \ result == l_sign (\ exact ( x ) ) ) ;
@∗/

int s i gn (double x , double e1 , double e2 ) {

i f ( x > e2 )
return 1 ;

i f ( x < e1 )
return −1;

return 0 ;
}

/∗@ requires

@ sx == \exact ( sx ) && sy == \exact ( sy ) &&
@ vx == \exact ( vx ) && vy == \exact ( vy ) &&
@ \abs ( sx ) <= 100.0 && \abs ( sy ) <= 100.0 &&
@ \abs ( vx ) <= 1.0 && \abs ( vy ) <= 1 . 0 ;
@ ensures

@ \ result != 0
@ ==> \ result == l_sign (\ exact ( sx )∗\ exact ( vx)+\exact ( sy )∗\ exact ( vy ) )
@ ∗ l_s ign (\ exact ( sx )∗\ exact ( vy)−\exact ( sy )∗\ exact ( vx ) ) ;
@∗/

int eps_l ine (double sx , double sy , double vx , double vy ){
int s1 , s2 ;

s1=s ign ( sx∗vx+sy∗vy , −0x1 .90641p−45, 0x1 .90641p−45);
s2=s ign ( sx∗vy−sy∗vx , −0x1 .90641p−45, 0x1 .90641p−45);

return s1∗ s2 ;
}

Fig. 8. A case study
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We de�ne a logic function logic integer l_sign (real x) that gives the
exact sign of a real number x, that is to say 1 if x ≥ 0 and −1 otherwise.
To mimic this perfect behavior when �oating-point computations occurred, we
use the function int sign (double x, double e1, double e2) that gives the
sign of x provided we know its rounding error is between e1 and e2. In the other
cases, the result is zero. The idea is to give a nonzero answer only when it is
unquestionable. To illustrate this, the graphs of the two functions is in Figure 9.

0

-1

1

x

l_sign(x)

(a) Logic function l_sign

0

e1

e2

-1

1

x

sign(x)

(b) Function sign

Fig. 9. Di�erences between two functions l_sign and sign

The function int eps_line (double sx, double sy, double vx, double

vy) of Figure 8 then does the same computations as the one of Figure 3, but the
result may be di�erent. More precisely, if the modi�ed function gives a nonzero
answer, it is the correct one (it gives the correct sign). But it may answer zero
(contrary to the original program) when it is unable to give a certi�ed answer. In
brief, the modi�ed program gives the correct answer. As in interval arithmetic,
the program does not lie, but it may not answer.

About the other assertions, the requirement on vx, sx. . . are reasonable values
given the fact they are position or distance in given units. The assertions about
s1 and s2 are here to help the automatic provers.

The most interesting parts are the value chosen for e1 and e2: they need to
bound the rounding error of the computation sx ∗ vx+ sy ∗ vy (and its counter-
part). For this, we will heavily rely on the Gappa tool [21, 22] that is intended
to help verifying and formally proving properties on numerical programs. In
particular, it will solve all the required proofs that no over�ow occur.

In the usual formalization where all computations directly round to 64 bits,
the values e2 = −e1 = 0x1p−45 are correct (it has been proved using the Gappa
tool). With our approach and a generic rounding, we have proved that the values
e2 = −e1 = 0x1.90641p− 45 are correct. This means that the rounding error of
sx∗vx+ sy ∗vy will always be smaller than this value whatever the architecture
and the compiler choices. This means that, even if a FMA is used or if extended
registers are used somewhere, this function does not lie.

The analysis of this program (obtained from the veri�cation condition viewer
gWhy [17]) is given in Figure 10. By using di�erent automatic theorem prover:
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Fig. 10. Result of the case study

Alt-Ergo [23], CVC3 [24], Gappa, we successfully prove all proof obligations in
this program.

Nearly all the proof obligations are quick to prove. The proof that the values
e1 and e2 bound the rounding error is much longer (about 60 seconds). This is
due to the fact that, for each operation, we have to split into 2 cases: normal and
subnormal and this creates a very large number of theorems to solve (exponential
in the numbers of computations).

5 Conclusions and further work

We have proposed an approach to give correct rounding errors whatever the ar-
chitecture and the choices of the compiler. This is implemented in the Frama-C
framework from the Beryllium release for all basic operations: addition, subtrac-
tion, multiplication, division, square root, negation, absolute value and we have
proved its correctness in Coq.

The time to run a program needs to be taken into account. With a program
containing few �oating-point operations, it works well. However, it will be slow
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with programs containing a large number of �oating-point operations, but this
may be enhanced in the future.

Another drawback is that we may only prove rounding errors. There is no
way to prove, for example, that a computation is correct (even if it would be
correct in all possible roundings). We are working on this limitation.

As we use the same conditions for all basic operations, it is both simple and
e�cient. Moreover, it handles both rounding according to 64-bit rounding in
IEEE-754 double precision, 80-bit rounding in x87, double rounding in IA-32
architecture, and FMA in Itanium and PowerPC processors.

Note that we only talked about double precision numbers as they are the
most used. This is easily applied to single precision computations the same way
(with single rounding, 80-bit rounding or double rounding).

The next step would be to allow the compiler to do anything, including re-
organizing the operations. This is a challenge as it may give very di�erent results.
for example, if |e| � |x|, then (e + x) − x gives zero while e + (x − x) gives e.
Nevertheless, some ideas could probably be reused to give a loose bound on the
rounding error.
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